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1 Introduction

Shannon sampling theorem states that (under reasonable conditions) one can compute
values of the Fourier transform f∧(ω) :=

∫ ∞

−∞
f(u)e−iωu du on the basis of samples if

the function f is band-limited, i.e. f∧(ω) = 0 for |ω| > Ω, Ω being a positive constant.
Let ∆t > 0 be so small that the Shannon-Nyquist condition ∆t ≤ π

Ω
is valid. Then for

all ω ∈ [−Ω, Ω] one has

f∧(ω) = ∆t

∞∑

k=−∞

f(k∆t) exp (−iωk∆t) .

Also, the sampling theorem is used to reconstruct functions (signals) from samples
f(k∆t). There has been a lot of work regarding the reconstruction of signals under
weaker assumptions than used in the sampling theorem, for a survey see [7]. Especially,
other kernels than the sinc function can be applied. [21] deals with kernels defined by
some window functions that we will discuss, too. But in contrast to reconstruction here
we focus on the approximation of f∧(ω).

In engineering applications only a finite number of samples out of a finite interval
[−R, R] is available. This is equivalent to dealing with a modified function f ·1[−R,R] whe-
re 1[−R,R] is the rectangle function with 1[−R,R](t) = 1 for t ∈ [−R, R] and 1[−R,R](t) = 0
elsewhere. Unfortunately, this product no longer is band-limited unless it is the null
function. Therefore, one has to cope with two errors: the difference between the trans-
forms of f and f · 1[−R,R] (truncation or leakage) and an approximation error that is
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called aliasing error by engineers. This aliasing error originates from the absence of
band-limitation of f · 1[−R,R].

In the periodic case we analyzed the aliasing error without the influence of truncation
for non-continuous functions in [14]. Since we now deal with band-limited functions
f , it seems natural to require continuity of f so that f equals the continuous inverse
Fourier transform of f∧.

Let us introduce some notations. L1(R) is the space of absolutely integrable (complex-
valued) functions on R, the set of real numbers, with norm ‖f‖1 :=

∫

R
|f(t)| dt. Also,

we use

‖f‖1,[a,b] :=

∫ b

a

|f(t)| dt, and ‖f‖∞,[a,b] := sup
t∈[a,b]

|f(t)|, ‖f‖∞ := ‖f‖∞,R.

To measure smoothness of functions we work with the well-known moduli of continuity.
Let n ∈ N where N := {1, 2, 3, . . .} denotes the set of natural numbers. The n-th
difference of a function f at point t is defined as

∆1
hf(t) := f(t + h) − f(t), ∆n

hf(t) := ∆1
h∆

n−1
h f(t), n > 1, or

∆n
hf(t) :=

n∑

j=0

(−1)n−j

(
n

j

)

f(t + jh),

and moduli of continuity are defined via n-th differences:

ωn(f, δ, C(R)) := sup
0<h<δ

‖∆n
hf(·)‖∞, ωn(f, δ, L1(R)) := sup

0<h<δ
‖∆n

hf(·)‖1.

To reduce truncation and aliasing errors, often “better“ window functions than 1[−R,R]

are used (see [15]). Here we investigate window functions gR with compact support in
[−R, R] that comply with following requirements:

(W1) gR(t) = g
(

t
R

)
for an even function g with compact support in [−1, 1].

(W2) g(0) = 1.

(W3) g is r + 1-times differentiable on R for an even r = 2s, s ∈ N ∪ {0}, and

ω2(δ, g
(r+1), L1(R)) = O(δ2), δ → 0 + .

For example, this asymptotic behaviour is given if g(r+1) is continuous and piece-
wise composed of a finite number of two-times continuously differentiable functi-
ons.

(W4) First r moments of g∧ are zero:
∫ ∞

−∞
ukg∧(u) du = 0 for each 1 ≤ k ≤ r (for odd

k this obviously is fulfilled because g is even; (W4) is an empty condition for
r = 0).

(W5) |1 − gR(t)| ≤ CtR
−r−2 (e.g. this is fulfilled if g is r + 2-times differentiable in a

neighbourhood of 0 with g(k)(0) = 0, 1 ≤ k ≤ r + 1, i.e. g approximates 1[−1,1]

near t = 0).
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Classical window functions that meet (W1–W5) for r = 0 are Hann-window (also
known as cos2-, von Hann-, and Hanning-window), Blackmann- and Blackmann-Harris-
window functions. They are special cases of conventional windows in the form of a sum
of cosine terms (cf. (W1), m ∈ N, r = 2s, s ∈ N ∪ {0})

g(t) :=

{ ∑m
k=0 ak cos (πkt) : −1 ≤ t ≤ 1

0 : |t| > 1,
(1.1)

where the constants ak have to be chosen such that (for (1.2) cf. [19], for (1.3) see [15,
p. 63])

m∑

k=0

(−1)kak = 0,

m∑

k=0

(−1)kk2jak = 0 for all 1 ≤ j ≤ s, (1.2)

m∑

k=0

ak = 1, (1.3)

m∑

k=0

k2jak = 0 for all 1 ≤ j ≤ s. (1.4)

Equation (1.3) implies (W2): g(0) =
∑m

k=0 ak = 1.

Condition (W3) holds true, because (1.2) ensures that all derivatives up to the order
r + 1 exist (especially at ±1). g(r+1) is continuous and infinitely often differentiable on
[−1, 1], (−∞,−1], and [1,∞).

Condition (W5) is fulfilled, too: Let R > |t|, then via Taylor-expansion of cosine and
(1.3, 1.4) we find some real numbers ξπkt

R
such that (R → ∞)

|1 − gR(t)| =

∣
∣
∣
∣
∣
1 −

m∑

k=0

ak cos

(
πkt

R

)
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
1 −

m∑

k=0

ak

[
s∑

j=0

(−1)j

(
πkt
R

)2j

(2j)!
+ (−1)s+1

(
πkt
R

)2s+2

(2s)!
cos

(

ξπkt
R

)
]∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
1 −

[
s∑

j=0

(−1)j

(
πt
R

)2j

(2j)!

m∑

k=0

k2jak

]

−

m∑

k=0

(−1)s+1

(
πkt
R

)2s+2

(2s)!
cos

(

ξπkt
R

)
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

m∑

k=0

ak

(
πkt
R

)2s+2

(2s)!
cos

(

ξπkt
R

)
∣
∣
∣
∣
∣
= Ot(R

−r−2).

With condition (W4) for r > 0 we deal in section 3.

Depending on m and ak we get following windows for r = 2s = 0 (see [15]):

• For m = 1 and a0 = a1 = 1
2

the function gR is the Hann-window function:

gR(t) =

{
1
2

+ 1
2
cos

(
π
R
t
)

= cos2
(

π
2R

t
)

: −R ≤ t ≤ R
0 : |t| > R.
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• For m = 2 and a0 = 1−c
2

, a1 = 1
2
, a2 = c

2
, 0 < c < 1, the function gR is called

Blackmann-window.

• The case m = 3 for (rounded) constants a0 = 0.359, a1 = 0.488, a2 = 0.141, and
a3 = 0.012 is the Blackmann-Harris-window.

In engineering applications often a fixed R is used, whereas we discuss R → ∞. For a
fixed R it turns out that violating (1.2) might give better results. In this context the
settings for the Hamming-window are m = 1, a0 = 0.54, a1 = 0.46 (cf. [23] for window
design).

In this paper we investigate the error of replacing (f∧)∗(ω) by ([f · gR]∧)∗(ω) where
(f∧)∗(ω) denotes a value of the discrete Fourier transform

(f∧)∗(ω) := ∆t
∑

k∈Z, k∆t∈[−R,R]

f(k∆t) exp (−iωk∆t) , (1.5)

where Z := {0, 1,−1, 2,−2, . . .}.

The rate of convergence is determined by (W3, W4) and the smoothness of f∧.

Theorem 1.1 Let f ∈ L1(R) be a continuous, band-limited function (f∧(ω) = 0 out-
side [−Ω, Ω]). Further, f∧ should be smooth in the sense that (f∧)(r) exists for an even
r = 2s, s ∈ N ∪ {0}, and

ω2((f
∧)(r), δ, C(R)) ≤ Cδα

for some 0 < α < 2. Let ∆t > 0 fulfill the Shannon-Nyquist condition

π

∆t
≥ Ω. (1.6)

The window function gR(t) = g(t/R) might fulfill (W1–W4).

Then for each 0 < Ω1 < Ω the following direct estimate holds true (R → ∞):

sup
ω∈[−Ω1,Ω1]

|f∧(ω) − [(f · gR)∧]∗(ω)| = O(R−r−α). (1.7)

Smoothness of f∧ (that is measured via the ω2-modulus of the r-th derivative) is closely
connected to the behavior of the tail integral of f (cf. [1]).

Estimate (1.7) is best possible in the following sense.

Theorem 1.2 Let |u1| ≤ Ω1 < Ω and ∆t > 0 be constants such that (1.6) is fulfilled.
Let r = 2s, s ∈ N ∪ {0}, and let the window function gR(t) = g(t/R) fulfill (W1–W3).

Then for each 0 < α < 2 with r + α > 1 there exists a continuous, real-valued coun-
terexample fα ∈ L1(R) that is band-limited in the sense of f∧(ω) = 0 for all |ω| > Ω,
such that (f∧)(r) exists and

ω2((f
∧
α )(r), δ, C(R)) ≤ Cδα

4



but (R → ∞)

|f∧
α (u1) − [(fα · gR)∧]∗(u1)| 6= o(R−r−α). (1.8)

If additionally (W5) holds true, then counterexample fα does not only behave like (1.8)
at the point u1 but for all ω ∈ [−Ω1, Ω1] there simultaneously is

|f∧
α (ω) − [(fα · gR)∧]∗(ω)| 6= o(R−r−α).

For window functions of type (1.1) fulfilling (1.2, 1.3) like the Hann- or Blackmann-
Harris-window, Theorem 1.1 holds true for r = 0, 0 < α < 2, and the estimate is best
possible at least for 1 < α < 2 simultaneously on a set [−Ω1, Ω1]. Examples of window
functions fulfilling (1.2–1.4) and (W1–W5) for r ≥ 2 are given in section 3. For these
examples Theorem 1.1 provides an estimate for r ≥ 2 that is best possible for all values
0 < α < 2 on a set [−Ω1, Ω1].

In what follows we discuss properties of window functions in the frequency domain, give
examples for convergence of order r > 0 and prove Theorem 1.1. In order to estimate
the error, we split it up into a truncation and an aliasing part:

|f∧(ω) − [(f ·gR)∧]∗(ω)| ≤ |f∧(ω) − (f ·gR)∧(ω)|
︸ ︷︷ ︸

truncation error

+ |(f ·gR)∧(ω) − [(f ·gR)∧]∗(ω)|
︸ ︷︷ ︸

aliasing error

.

We discuss each error in a separate section and conclude with the proof of Theorem
1.2.

Proofs of Theorems 1.1 and 1.2 discuss properties of window functions in terms of
Approximation Theory. This perspective might also be helpful to engineers working in
the field of signal analysis.

2 Window functions as kernels in frequency domain

Window functions that fulfill (W1–W3) can be interpreted as kernels of Fejér-type in
the frequency domain.

We define an even (cf. (W1)), real-valued, continuous kernel χ via (inverse) Fourier
transform:

χ(u) :=
1

2π
g∧(u) =

1

2π

∫ 1

−1

g(v)e−ivu dv.

Well-known Riemann-Lebesgue-lemma with orders (cf. [22]) gives the estimate

|χ(u)| =
1

2π
|g∧(u)| ≤ Cωr+3

(
π

|u|
, g, L1(R)

)

.

As a consequence of (W3) we get

ωr+3

(
π

|u|
, g, L1(R)

)

≤ C1|u|
−r−1ω2

(
π

|u|
, g(r+1), L1(R)

)

≤ C2|u|
−r−3.
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We have shown that

|χ(u)| ≤ C|u|−r−3. (2.1)

That means that χ ∈ L1(R), χ is Fourier transformable with χ∧(t) = g(t) so that χ is
band-limited. The sidelobe falloff rate of order r+3 implies that the (r+α)-th absolute
moment of χ exists for 0 < α < 2:

m(χ, r + α) :=

∫ ∞

−∞

|u|r+α|χ(u)| du < ∞. (2.2)

Because of (W2) the kernel is normed:

∫ ∞

−∞

χ(u) du = χ∧(0) = g(0) = 1. (2.3)

We can write gR(t) with χ as follows:

[Rχ(R·)]∧(t) = χ∧

(
t

R

)

= gR(t). (2.4)

The set of functions {Rχ(Rx) : R > 0} (and also the function χ) is called a kernel
of Fejér-type. In Approximation Theory it serves as an approximate identity (cf. [6,
p. 121]). In section 5 we estimate the truncation error as a remainder of such an
approximation process.

Condition (W4) is a requirement for moments of the kernel that we verify for a certain
class of window-functions in section 3:

0 =

∫ ∞

−∞

ukg∧(u) du = 2π

∫ ∞

−∞

ukχ(u) du. (2.5)

The continuous kernel corresponding to (1.1) is a well-known linear combination of
sinc-functions where sinc(u) = sin(u)/u. By partial integration we get

χ(u) = −
u sin(u)

π

m∑

k=0

ak(−1)k

k2π2 − u2
=

sin(u)

2π

m∑

k=0

ak(−1)k

[
1

kπ + u
−

1

kπ − u

]

(2.6)

=
1

2π

m∑

k=0

ak [sinc(kπ + u)+sinc(kπ − u)] ,

especially the Hann-window function leads to the kernel χ(u) = 1
2π

sinc(u)

1− u2

π2

.

3 Higher order of convergence

So far our examples are chosen for r = 0. To get window-functions for higher orders
r = 2s, s ∈ N, we restrict ourselves to the case where m = r + 1.
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Please note that in this case there is a unique solution to linear equations (1.2–1.4):
With Gauss operations we transform matrix A representing equations (1.3), (1.4), and
(1.2) into the matrix B:
















1 1 1 1 1 1 . . .
0 1 41 91 161 251

0 1 42 92 162 252

...
1 −1 1 −1 1 −1 . . .
0 −1 41 −91 161 −251

0 −1 42 −92 162 −252

...
















︸ ︷︷ ︸

A

,
















1 0 1 0 1 0 . . .
0 0 41 0 161 0
0 0 42 0 162 0
...
0 1 0 1 0 1 . . .
0 1 0 91 0 251

0 1 0 92 0 252

...
















︸ ︷︷ ︸

B

.

First r
2

+ 1 rows of B without columns of zeroes make up a Vandermode matrix. The
same is true for the remaining r

2
+1 rows. Therefore, both groups of equations are linear

independent. Because the groups have different zero columns, it immediately follows
that all rows in B (and therefore in A) are linear independent such that there is a
unique solution.

The next observation is that ak = 0, k ∈ {2, 4, . . . , r}. To see this, we combine homo-
geneous equations (1.2) and (1.4) for 1 ≤ j ≤ s by adding them in pairs. Then we get s
linear independent equations for the s variables a2, a4, . . . , ar that are of Vandermonde-
type as well (cf. rows 2 to r

2
+ 1 in B). As a solution of the homogeneous system the

variables are zero.

We show that with these parameters (W4) is fulfilled. To this end, we compute mo-
ments (2.5) for k = 2j, 1 ≤ j ≤ s = r

2
. Please note that the highest power of the

nominator is less than the highest power of the denominator in the fraction part of
the following integral. The reason is tail estimate (2.1). Therefore we can use partial
fraction decomposition with constants Ak. With J := {1, 3, 5, . . . r + 1} we get (cf.
(2.6))

∫ ∞

−∞

u2jg∧(u) du = 4π

∫ ∞

0

u2jχ(u) du =

∫ ∞

0

sin(u)
∑

k∈J

[
Ak

u − kπ
+

Ak

u + kπ

]

du (3.1)

=
∑

k∈J

Ak

∫ ∞

0

sin(u)

u − kπ
+

sin(u)

u + kπ
du

=
∑

k∈J

Ak(−1)k

∫ ∞

0

sin(u − kπ)

u − kπ
+

sin(u + kπ)

u + kπ
du

=
∑

k∈J

Ak(−1)k
[π

2
+Si(kπ)+

π

2
−Si(kπ)

]

= π
∑

k∈J

Ak(−1)k = −π
∑

k∈J

Ak = 0.

Note that terms Ak

u−kπ
and Ak

u+kπ
share the same constant Ak. In the last step we use that

∑

k∈J 2Ak is the coefficient of u2(r+1−r/2)−1 = ur+1 in the nominator if we write the sum
in (3.1) as one fraction. The highest power of the denominator then is 2(r +1− r/2) =
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r +2. Because of (2.1) there can be no higher power than 2j +(r +2)− (r +3) ≤ r− 1
in the nominator. Therefore

∑

k∈J Ak = 0.

We have proved that for each r = 2s, s ∈ N, there is a window-function fulfilling (W1–
W5) so that error estimate Theorem 1.1 gives a sharp error bound of order O(R−r−α),
0 < α < 2.

Coefficients in the case r = 4, m = 3 are a0 = 1
2
, a1 = 9

16
, a2 = 0, and a3 = − 1

16
. They

define the window-function

gR(t) =

{
1
2

+ 9
16

cos
(

π
R
t
)
− 1

16
cos

(
3π
R

t
)

: −R ≤ t ≤ R
0 : |t| > R.

This window was introduced in [2] for aesthetic reasons but not as a result of mathe-
matical optimiziation (as it is said in [2]).

4 Aliasing error

It is well known that the Shannon sampling theorem can be proved via the Poisson
summation formula. We use this approach to estimate the aliasing error.

Let f , ‖f‖1 < ∞, be band-limited to [−Ω, Ω], and gR(t) = g(t/R) be a window function
satisfying (W1–W3).

The inverse Fourier transform (f∧)∨ of f∧ does exist because of band limitation. In
Theorem 1.1 we investigate a continuous function f . For the next arguments the con-
tinuity is not required. Without continuity there is f = (f∧)∨ a.e.

(f · gR)∧(ω) can be written as the convolution

1

2π
(f∧ ∗ g∧

R)(ω) :=
1

2π

∫ ∞

−∞

f∧(u)g∧
R(ω − u) du =

1

2π

∫ Ω

−Ω

f∧(u)g∧
R(ω − u) du.

We apply Poisson summation to the function

h(ω) := ∆t(f(·∆t)gR(·∆t))∧(ω) = (fgR)∧
( ω

∆t

)

=
1

2π
[f∧ ∗ g∧

R]
( ω

∆t

)

where parameter ∆t > 0 is fixed.

We verify preliminaries of the Poisson summation formula (cf. [6, p. 202]):

• As a Fourier transform, h is continuous on R.

• The function h is absolutely integrable because

∫ ∞

−∞

|h(ω)| dω ≤
1

2π

∫ ∞

−∞

∫ ∞

−∞

∣
∣
∣f∧

( ω

∆t
− u

)∣
∣
∣ |g∧

R(u)| dωdu

=
∆t

2π
‖g∧

R‖1

∫ Ω

−Ω

|f∧(ω)|dω < ∞.
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• Sequence (h∧(k))k∈Z is absolutely summable:

∞∑

k=−∞

|h∧(k)| = 2π∆t
∞∑

k=−∞

|([f∧]∨gR)(−k∆t)|

= 2π∆t
∑

k∈Z∩[−R/∆t,R/∆t]

|([f∧]∨gR)(k∆t)| < ∞.

• We show that the series
∑∞

k=−∞ h(ω + k2π) converges uniformly in ω on [0, 2π]
(and therefore on R). To this end, we estimate the summands:

|h(ω + k2π)| =
1

2π

∣
∣
∣
∣

∫ Ω

−Ω

f∧(u)g∧
R

(
ω

∆t
+ k

2π

∆t
− u

)

du

∣
∣
∣
∣

≤
1

2π
‖f∧‖∞,[−Ω,Ω]‖g

∧
R‖1,[−Ω+k2π/∆t,Ω+(k+1)2π/∆t]. (4.1)

The right side is independent of ω. Let l ∈ N such that Ω ≤ l 2π
∆t

. Then

∞∑

k=−∞

‖g∧
R‖1,[−Ω+k2π/∆t,Ω+(k+1)2π/∆t]

≤
∞∑

k=−∞

‖g∧
R‖1,[(−l+k)2π/∆t,(l+k+1)2π/∆t] = (2l + 1)‖g∧

R‖1.

The convergent majorant (4.1) proves uniform convergence.

Now we can apply the Poisson summation formula: For each ω0 ∈ R there holds true

∞∑

k=−∞

h(ω0 + k2π) =
1

2π

∞∑

k=−∞

h∧(k)eikω0,

i.e.

1

2π

∞∑

k=−∞

[f∧ ∗ g∧
R]

(
ω0

∆t
+ k

2π

∆t

)

= ∆t

∞∑

k=−∞

[f∧]∨(−k∆t)gR(−k∆t)eikω0

= ∆t
∞∑

k=−∞

[f∧]∨(k∆t)gR(k∆t)e−ikω0 .

By setting ω0 := ω∆t we get

1

2π

∞∑

k=−∞

[f∧ ∗ g∧
R]

(

ω + k
2π

∆t

)

= ∆t

∞∑

k=−∞

[f∧]∨(k∆t)gR(k∆t)e−iωk∆t.

This gives a formula for the aliasing error for continuous f (i.e. (f∧)∨ = f):

(f · gR)∧(ω) − [(f · gR)∧]∗(ω)
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=
1

2π
[f∧ ∗ g∧

R](ω) − ∆t
∞∑

k=−∞

f(k∆t)gR(k∆t)e−iωk∆t

= −
1

2π

∑

k∈Z\{0}

[f∧ ∗ g∧
R]

(

ω + k
2π

∆t

)

= −
∑

k∈Z\{0}

[f · gR]∧
(

ω + k
2π

∆t

)

.

With this formula we now prove an error estimate that is independent of the smoothness
of f∧. It only takes asymptotic behavior of kernel χ (cf. (2.4)) into account. At this
point condition (1.6) is needed, i.e. Ω ≤ π

∆t
. For each ω ∈ [−Ω1, Ω1] we get

|(f · gR)∧(ω) − [(f · gR)∧]∗(ω)|

≤
1

2π

∑

k∈Z\{0}

∣
∣
∣
∣

∫ Ω

−Ω

f∧(u)g∧
R

(

ω + k
2π

∆t
− u

)

du

∣
∣
∣
∣

≤
1

2π
‖f∧‖∞,[−Ω,Ω]

∑

k∈Z\{0}

‖g∧
R‖1,[ω+(2k−1) π

∆t
,ω+(2k+1) π

∆t ]

=
1

2π
‖f∧‖∞,[−Ω,Ω]‖g

∧
R‖1,R\[ω− π

∆t
,ω+ π

∆t ]
≤

1

2π
‖f∧‖∞,[−Ω,Ω]‖g

∧
R‖1,R\[ω−Ω,ω+Ω]

=
1

2π
‖f∧‖∞,[−Ω,Ω]‖Rg∧(R·)‖1,R\[ω−Ω,ω+Ω]=‖f

∧‖∞,[−Ω,Ω]‖χ‖1,R\[R(ω−Ω),R(ω+Ω)].

Please note that ω + Ω ≥ Ω − Ω1 > 0, and ω − Ω ≤ Ω1 − Ω < 0. Together with (2.1)
we conclude

‖χ‖1,[R(ω+Ω),∞) ≤ ‖χ‖1,[R(Ω−Ω1),∞) ≤
C

r + 2
(Ω − Ω1)

−r−2R−r−2,

‖χ‖1,(−∞,R(ω−Ω)] ≤ ‖χ‖1,(−∞,R(Ω1−Ω)] ≤
C

r + 2
(Ω − Ω1)

−r−2R−r−2,

i.e., |(f ·gR)∧(ω)− [(f ·gR)∧]∗(ω)| = O(R−r−2) independently of ω ∈ [−Ω1, Ω1]. Because
r + α < r + 2 this proves that in the context of Theorem 1.1 the aliasing error is of
order O(R−r−α).

5 Truncation error

Let χ ∈ L1(R) be an even kernel that fulfills (2.2, 2.3, 2.5) for an r = 2s, s ∈ N ∪ {0},
i.e. the (r + α)-th absolute moments of the normed kernel exist for 0 < α < 2 and
all moments up to the r-th moment are zero. Then for every r-times continuously
differentiable ϕ : R → C with

ω2(ϕ
(r), δ, C(R)) ≤ Cδα

there holds true (see [6, p.144])

sup
ω∈R

|ϕ(ω) − [ϕ ∗ Rχ(·R)](ω)| ≤ CR−r−α.

10



This classic estimate for a convolution process can be applied to estimate the truncation
error under the preliminaries of Theorem 1.1 with ϕ = f∧ and Rχ(·R) = 1

2π
g∧

R. Since
conditions (2.2, 2.3, 2.5) follow from (W1–W4) (see section 2) we have shown

sup
ω∈R

|f∧(ω) − (f ·gR)∧(ω)| ≤ CR−r−α.

In connection with the result of the previous section this completes the proof of Theo-
rem 1.1.

6 Sharpness

In this section we prove Theorem 1.2. Preliminaries ensure that the aliasing error vanis-
hes with order O(R−r−2). Because α < 2, it is sufficient to construct a counterexample
fα so that the truncation error is 6= o(R−r−α). This is the error of a convolution pro-
cess of Fejér-type as discussed in the previous section. In [18] sharpness of such error
bounds is shown on the basis of quantitative extensions of the uniform boundedness
principle developed by Dickmeis, Nessel and van Wickeren (cf. [9, 10]). We follow this
approach and modify it to fit for band-limited functions. In this manner we get coun-
terexamples in the frequency domain. By inverse Fourier transform we then find the
results of Theorem 1.2. Similar applications of the uniform boundedness principle on
other fields of Numerical Analysis are presented in [5, 4, 3, 11, 12, 13]. In [20] it is
applied to reconstruction from samples.

An abstract modulus of continuity is a function ω, continuous on [0,∞) such that, for
0 < δ1, δ2,

0 = ω(0) < ω(δ1) ≤ ω(δ1 + δ2) ≤ ω(δ1) + ω(δ2). (6.1)

Functions ω(δ) := δβ, 0 < β ≤ 1, satisfy these conditions.

For a Banach space X with norm ‖ · ‖X let X∼ be the set of non-negative-valued
sublinear bounded functionals T on X, i.e., T maps X into R such that for all f, g ∈
X, c ∈ R

Tf ≥ 0, T (f + g) ≤ Tf + Tg, T (cf) = |c|Tf,

‖T‖X∼ := sup{Tf : ‖f‖X ≤ 1} < ∞.

Theorem 6.1 Suppose that for a family of remainders {Tn,u : n ∈ N, u ∈ B} ⊂ X∼,
B being a non-empty index set, and for a measure of smoothness {Sδ : δ > 0} ⊂ X∼

there are test elements hn ∈ X and a constant n0 ∈ N such that for all n > n0, n ∈ N,
and all 0 < δ (≤ 1):

‖hn‖X ≤ C1, (6.2)

Sδhn ≤ C2 min

{

1,
σ(δ)

ϕn

}

, (6.3)

Tn,u1
hn ≥ C3,u1

> 0, (6.4)

11



where σ(δ) is a function, strictly positive on (0,∞), and (ϕn)n∈N ⊂ R is a strictly
decreasing sequence with limn→∞ ϕn = 0, and u1 ∈ B is a fixed index. Then for each
modulus ω satisfying (6.1) and

lim
δ→0+

ω(δ)

δ
= ∞

there exists a counterexample fω ∈ X,

fω =

∞∑

k=1

ω (ϕnk
) hnk

(6.5)

for a strictly increasing sequence (nk)
∞
k=1 of natural numbers such that (δ → 0+, n →

∞)

Sδfω = O (ω(σ(δ))) ,

Tn,u1
fω 6= o(ω(ϕn)).

The sequence (nk)
∞
k=1 can be chosen such that

Tn,ufω 6= o(ω(ϕn)) (6.6)

simultaneously for all u ∈ B, if instead of (6.4) following conditions are satisfied for
all u ∈ B and 1 ≤ j ≤ n − 1, n > n0:

‖Tn,u‖X∼ ≤ C4,n, (6.7)

Tn,uhj ≤ C5,uC5,jϕn, (6.8)

Tn,uhn ≥ C6,u > 0. (6.9)

For a constructive proof of the first part using a gliding hump, further comments, and
applications to Approximation Theory see [10]. The extension to the index set B is a
special case of more general theorems proven in [9, 16, 17].

We use this general concept to show Theorem 1.2. To this end let σ(δ) := δ2, ϕn := 1
n2 ,

and ω(δ) := δα/2. Let X be the space of r-times continuously differentiable functions
with compact support in [−Ω, Ω] equipped with sup-norm ‖f‖r,∞ :=

∑r
k=0 ‖f

(r)‖∞.
For f ∈ X we set Sδf := ω2(f

(r), δ, C(R)).

For construction of test elements we place a constant Ω0 between Ω1 and Ω: 0 < |u1| ≤
Ω1 < Ω0 < Ω.

Functionals Tn := Tn,u express the truncation error at the point u (especially for
u = u1):

Tn,uf := nr|f(u) − [f ∗ nχ(·n)](u)|.

Therefore, Tn,u ∈ X∼ with ‖Tn,u‖X∼ ≤ nr[1 + ‖χ‖1].

The sequence of test elements is constructed from functions

h̃n(u) :=
1

nr
exp(iuω0n).

12



Here, ω0 ∈ R is a constant such that |χ∧(ω0)| ≤
1
2

(note that limu→±∞ χ∧(u) = 0).
These functions ensure that

Tn,uh̃n = nr|h̃n(u) − [h̃n ∗ nχ(·n)](u)| =

∣
∣
∣
∣
eiuω0n − eiuω0nn

∫ ∞

−∞

e−iω0ntχ(nt) dt

∣
∣
∣
∣

=

∣
∣
∣
∣
1 −

∫ ∞

−∞

e−iω0vχ(v) dv

∣
∣
∣
∣
= |1 − χ∧(ω0)| ≥

1

2
.

Functions h̃n do not have a compact support so that they do not belong to X. Therefore,
we modify them through multiplication with a smooth window function H . Let H :
R → R be an even function, arbitrary often differentiable with compact support in
[−Ω, Ω], so that for all u ∈ [−Ω0, Ω0] ⊂ [−Ω, Ω] there is H(u) = 1. Function H can be
chosen such that |H(u)| ≤ 1, u ∈ R. Now we define the test elements

hn(u) := h̃n(u)H(u).

Obviously, ‖hn‖X = ‖hn‖r,∞ ≤ C1, giving (6.2). Also, Sδhn ≤ 4‖h
(r)
n ‖∞ = O(1) and

Sδhn ≤ C1δ
2‖h(r+2)

n ‖∞ ≤ C1δ
2 1

nr

r+2∑

k=0

(
r + 2

k

)

nkωk
0‖H

(r+2−k)‖∞

≤ C2δ
2n2 = C2

σ(δ)

ϕn

.

That validates (6.3).

For u ∈ [−Ω1, Ω1] there is 1 − H(u) = 0 and

Tn,uhn ≥ nr
∣
∣
∣h̃n(u) − [h̃n ∗ nχ(·n)](u)

∣
∣
∣−

−nr
∣
∣
∣h̃n(u)[1 − H(u)] − [h̃n[1 − H ] ∗ nχ(·n)](u)

∣
∣
∣

= |1 − χ∧(ω0)| − nr|h̃n[1 − H ] ∗ nχ(·n)](u)|

≥
1

2
−

∣
∣
∣
∣
einω0u

∫ ∞

−∞

e−inω0v[1 − H(u − v)]nχ(nv) dv

∣
∣
∣
∣

=
1

2
−

∣
∣
∣
∣

∫

R\[n(u−Ω0),n(u+Ω0)]

e−iω0v
[

1 − H
(

u −
v

n

)]

χ(v) dv

∣
∣
∣
∣

≥
1

2
−

∫

R\[n(u−Ω0),n(u+Ω0)]

|χ(v)| dv ≥
1

2
−

∫

R\[n(Ω1−Ω0),n(−Ω1+Ω0)]

|χ(v)| dv.

Since χ ∈ L1(R), the last integral converges to zero as n → ∞ (independently of u).
We select n0 such that for all n > n0 and u ∈ [−Ω1, Ω1]

Tn,ωhn ≥
1

4
.

For u := u1 we have shown (6.2).

Now we can apply Theorem 6.1 to get a continuous counterexample hα with compact
support in [−Ω, Ω] and

ω2(h
(r)
α , δ, C(R)) ≤ Cδα
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but
|hα(u1) − (hα ∗ Rχ(R·))(u1)| 6= o(R−r−α).

By inverse Fourier transform we find the required continuous counterexample fα(t) :=
h∨

α(t) := 1
2π

h∧
α(−t). We show that fα(t) belongs to L1(R). To this end Riemann-

Lebesgue-lemma (cf. [22]) gives

|fα(t)| ≤ Cωr+2

(
π

|t|
, hα, L1(R)

)

.

Obviously (t → ±∞)

ωr+2

(
π

|t|
, hα, L1(R)

)

≤

[

2Ω + r
π

|t|

]

ωr+2

(
π

|t|
, hα, C(R)

)

≤ Cω2

(
π

|t|
, h(r)

α , C(R)

)

= O(|t|−r−α).

Because of r + α > 1 the L1-norm of fα is finite. fα can be Fourier transformed and
the transform is hα.

Please note that all test elements hn are complex-valued and that hα is complex-valued,
too. Real parts Re(hn) are even and imaginary parts Im(hn) are odd. Because of (6.5)
this leads to a counterexample hα in the frequency domain that has an even real
part and an odd imaginary part. Inverse Fourier transform then gives a real-valued
counterexample fα in the time domain. We have shown (1.8).

Getting a real-valued counterexample through inverse Fourier transform is very much
simpler than constructing a real-valued counterexample for convolution processes in
the frequency domain (cf. [18]).

It remains to prove simultaneous sharpness on B using condition (W5) in connection
with (2.4). To this end let 1 ≤ j < n:

Tn,uh̃j = nr|h̃j(u) − [h̃j ∗ nχ(·n)](u)|

=

(
n

j

)r ∣
∣
∣
∣
eiuω0j − eiuω0jn

∫ ∞

−∞

e−iω0
j

n
ntχ(nt) dt

∣
∣
∣
∣

=

(
n

j

)r ∣
∣
∣
∣
1−

∫ ∞

−∞

e−iω0
j

n
vχ(v) dv

∣
∣
∣
∣
=

(
n

j

)r ∣
∣
∣
∣
1−χ∧

(
j

n

)∣
∣
∣
∣
≤ Cj

(
n
j

)r

nr+2
≤ Cjϕn.

That enables us to show (6.8) for all u ∈ B:

Tn,uhj ≤ nr
[∣
∣
∣h̃j(u)−[h̃j∗nχ(·n)](u)

∣
∣
∣+

∣
∣
∣h̃j(u)[1−H(u)]−[h̃j[1−H ]∗nχ(·n)](u)

∣
∣
∣

]

≤ Cϕn + nr|h̃j [1 − H ] ∗ nχ(·n)](u)|

= Cϕn +

(
n

j

)r ∣
∣
∣
∣

∫

R\[n(u−Ω0),n(u+Ω0)]

e−iω0
j

n
v
[

1 − H
(

u −
v

n

)]

χ(v) dv

∣
∣
∣
∣

≤ Cϕn +

(
n

j

)r ∫

R\[n(Ω1−Ω0),n(−Ω1+Ω0)]

|χ(v)| dv = Cϕn + 2

(
n

j

)r ∫ ∞

n(Ω0−Ω1)

|χ(v)| dv.
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Tail condition (2.1) completes the estimate against ϕn with constants not depending
on u or n:

Tn,uhj ≤ Cϕn + C2

(
n

j

)r
−2

r + 2

[
1

ur+2

]∞

n(Ω0−Ω1)

= Cϕn + C2

(
1

j

)r
2

r + 2

1

(Ω0 − Ω1)r+2
ϕn.

Please note, that we already have shown (6.7) and (6.9). With respect to (6.6) this
brings the proof of Theorem 1.2 to an end. We refer to our previous remark that
counterexample fα (created by inverse Fourier transform of hα) also is real-valued in
the context of simultaneous sharpness because of (6.5).
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